Arbitrarily High-order Accurate Entropy Stable Essentially Nonoscillatory Schemes for Systems of Conservation Laws
نویسندگان
چکیده
We design arbitrarily high-order accurate entropy stable schemes for systems of conservation laws. The schemes, termed TeCNO schemes, are based on two main ingredients: (i) high-order accurate entropy conservative fluxes and (ii) suitable numerical diffusion operators involving ENO reconstructed cell-interface values of scaled entropy variables. Numerical experiments in one and two space dimensions are presented to illustrate the robust numerical performance of the TeCNO schemes.
منابع مشابه
The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملConvergence of High Order Finite Volume Weighted Essentially Nonoscillatory Scheme and Discontinuous Galerkin Method for Nonconvex Conservation Laws
In this paper, we consider the issue of convergence toward entropy solutions for high order finite volume weighted essentially non-oscillatory (WENO) scheme and discontinuous Galerkin (DG) finite element method approximating scalar nonconvex conservation laws. Although such high order nonlinearly stable schemes can usually converge to entropy solutions of convex conservation laws, convergence m...
متن کاملPerfect Derivatives, Conservative Differences and Entropy Stable Computation of Hyperbolic Conservation Laws
Entropy stability plays an important role in the dynamics of nonlinear systems of hyperbolic conservation laws and related convection-diffusion equations. Here we are concerned with the corresponding question of numerical entropy stability — we review a general framework for designing entropy stable approximations of such systems. The framework, developed in [28, 29] and in an ongoing series of...
متن کاملEntropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws
We present a streamline diffusion shock capturing spacetime discontinuous Galerkin (DG) method to approximate nonlinear systems of conservation laws in several space dimensions. The degrees of freedom are in terms of the entropy variables and the numerical flux functions are the entropy stable finite volume fluxes. We show entropy stability of the (formally) arbitrarily high order accurate meth...
متن کاملHigh Resolution Schemes for Hyperbolic Conservation Laws
A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurate scheme to an appropriately modified flux function. The so-derived second order accurate schemes achieve high resolution while preserving the robust...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 50 شماره
صفحات -
تاریخ انتشار 2012